The Scaling, Splitting, and Squaring Method for the Exponential of Perturbed Matrices

نویسندگان

  • Philipp Bader
  • Sergio Blanes
  • Muaz Seydaoglu
چکیده

We propose splitting methods for the computation of the exponential of perturbed matrices which can be written as the sum A = D+εB of a sparse and efficiently exponentiable matrix D with sparse exponential eD and a dense matrix εB which is of small norm in comparison with D. The predominant algorithm is based on scaling the large matrix A by a small number 2−s, which is then exponentiated by efficient Padé or Taylor methods and finally squared in order to obtain an approximation for the full exponential. In this setting, the main portion of the computational cost arises from dense-matrix multiplications and we present a modified squaring which takes advantage of the smallness of the perturbed matrix B in order to reduce the number of squarings necessary. Theoretical results on local error and error propagation for splitting methods are complemented with numerical experiments and show a clear improvement over existing methods when medium precision is sought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Scaling-squaring Taylor Method for Computing the Matrix Exponential∗

The matrix exponential plays a fundamental role in linear systems arising in engineering, mechanics and control theory. In this paper, an efficient Taylor method for computing matrix exponentials is presented. Taylor series truncation together with a modification of the PatersonStockmeyer method avoiding factorial evaluations, and the scaling-squaring technique, allow efficient computation of t...

متن کامل

Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm

A popular method for computing the matrix logarithm is the inverse scaling and squaring method, which essentially carries out the steps of the scaling and squaring method for the matrix exponential in reverse order. Here we make several improvements to the method, putting its development on a par with our recent version [SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989] of the scaling and squ...

متن کامل

Detection of perturbed quantization (PQ) steganography based on empirical matrix

Perturbed Quantization (PQ) steganography scheme is almost undetectable with the current steganalysis methods. We present a new steganalysis method for detection of this data hiding algorithm. We show that the PQ method distorts the dependencies of DCT coefficient values; especially changes much lower than significant bit planes. For steganalysis of PQ, we propose features extraction from the e...

متن کامل

Aggressively Truncated Taylor Series Method for Accurate Computation of Exponentials of Essentially Nonnegative Matrices

Small relative perturbations to the entries of an essentially nonnegative matrix introduce small relative errors to entries of its exponential. It is thus desirable to compute the exponential with high componentwise relative accuracy. Taylor series approximation coupled with scaling and squaring is used to compute the exponential of an essentially nonnegative matrix. An a priori componentwise r...

متن کامل

Accurate matrix exponential computation to solve coupled differential models in engineering

The matrix exponential plays a fundamental role in linear systems arising in engineering, mechanics and control theory. This work presents a new scaling-squaring algorithm for matrix exponential computation. It uses forward and backward error analysis with improved bounds for normal and nonnormal matrices. Applied to the Taylor method, it has presented a lower or similar cost compared to the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015